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Abstract—In recent years, numerous multicore RISC-V platforms
have emerged. Development frameworks such as OpenPiton are
employed in designs that aim to scale to a large number of cores.
While OpenPiton presents a large flexibility, supporting different
requirements and processing cores, some of its design decisions result
in designs that are not optimized for High-Performance Computing
(HPC) requirements.

This work presents OpenPiton4HPC, an extension and optimization
of OpenPiton for high-performance manycores. The key contributions
are enabling multiple memory controllers, supporting router bypassing
and NoC concentration, adding support for configurable cache sizes
and cache block sizes, and allowing configurable bus widths in the NoC
and in the cache SRAMs. On a 64-core manycore architecture, these
new features and optimizations provide a geometric mean speedup
of 7.2x compared to the OpenPiton baseline.

Index Terms—Many-core, Network-On-Chip, optimization,
OpenPiton, RISC-V

I. INTRODUCTION

Multicore processors have dominated the landscape of high
performance computer architecture for many years. Industry led the
way during the early days of the multicore era, with numerous ven-
dors designing and fabricating multicore processors, while academia
heavily studied multicores using software simulators and modeling
tools. This trend has changed in recent years thanks to the emergence
of RISC-V, which has drastically facilitated designing cores both in
industry and academia. In addition, multiple tools and frameworks
have been developed within the RISC-V ecosystem, which allows
designing multicore processors in an easy and practical manner.

NoCs are a key component of multicore processors. The purpose
of the NoC is to interconnect multiple cores and the memory
hierarchy, allowing efficient data transfer between them. Within the
RISC-V ecosystem, NoCs are employed in large-scale multicores
or manycores such as OpenPiton [1], BlackParrot [2], and the ESP
open SoC platform [3], while simpler crossbar communication is
utilized in platforms such as lowRISC [4] and PULP [5], which
primarily target applications for the Internet-of-Things (IoT) and
put special emphasis on low power consumption.
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OpenPiton has received a lot of attention as a development
platform for creating manycore processors due to the multiple
benefits it provides. Among other benefits, OpenPiton is open
source, easy to use, highly scalable and configurable, it provides a
mature tool ecosystem with Linux support, it is easily synthesizable
to FPGA and ASIC, and it provides a large test suite.

However, the NoC and the memory hierarchy of OpenPiton do
not include certain features and characteristics typically found in
high-performance manycores. This is because OpenPiton focuses
on a general userbase, and the optimizations for high-performance
cache hierarchies and NoCs can come at a non-negligible cost in
terms of area or power consumption which may not be affordable
in computing domains with more restrictive constraints. Yet, adding
high-performance features and optimizations in a configurable
manner can help expanding the horizon of OpenPiton without
sacrificing its flexibility.

This paper extends a previously published paper [6], which
presented an early version of OpenPiton4HPC. OpenPiton4HPC
presents a set of extensions and optimizations to the NoC and the
memory hierarchy of OpenPiton specifically aimed at improving the
performance of large-scale multicore and manycore architectures.
The key contributions of the previously published paper [6] were:

• The capability to including multiple memory controllers in
the chip to increase the memory bandwidth of the system.

• Router bypassing and NoC concentration features to reduce
the latency of core communications and data transfers inside
the NoC.

• Support for configurable cache sizes and cache block sizes
in the cache hierarchy to improve its efficiency.

Meanwhile, the key contributions of this paper extension are:

• We add support for configurable cache block sizes in the L1
instruction cache.

• We increase the RAM bus width of all the caches of the
hierarchy to reduce the latency of cache accesses. This allows
for a single-cycle cache access, but it increases the serialization
latency in the NoC for data block transfer.

• We increase the width of the NoC buses to minimize the se-
rialization latency and improve the communication bandwidth.

• We extend the evaluation with an area analysis of an FPGA
prototype of the proposed optimized design, an analysis of
the impact of memory controller placement and an analysis
of the improvements in throughput.

Compared to the OpenPiton baseline, the combination of all the
features and optimizations provides a geometric mean speedup of
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7.2x (28.5% over the previous work [6]) on a 64-core manycore
architecture, discussed in Section V-H1. In addition, this work
preserves the flexibility of the OpenPiton framework by completely
parameterizing all the proposed optimizations, in such a way that
users can configure the different architectural parameters according
to the performance goals or power and area constraints of their
designs. Similarly, this work also preserves the open spirit of
OpenPiton and its notorious involvement in the research community,
so all the optimizations and new features presented in this work are
open source [7].

The rest of the paper is organized as follows. Section II provides
the required background and the motivation for the work. Section III
presents the contributions in OpenPiton4HPC. Section IV presents
the evaluation methodology and Section V presents and analyzes the
results, followed by a discussion in Section VI. Finally, Section VII
presents some related work and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

Originally, OpenPiton was developed for SPARC v9 architectures
(OpenSPARC T1); however, in recent projects, the platform has
been adapted to work with RISC-V architectures [8]–[10].

The OpenPiton architecture consists of a single chipset and
multiple tiles. The chipset handles tile-to-peripheral communication,
featuring several modules like bootrom, memory controller, and
UART. The tiles construct the multicore mesh, connecting tiles via
three physical NoCs. Each tile contains the cache hierarchy (private
and shared cache levels), the three NoC routers, and the core.
The tiles can feature cores with different architectures, including
RISC-V 32-bit, RISC-V 64-bit, x86, and SPARCv9 [11].

A. OpenPiton and RISC-V Architectures

OpenPiton is compatible with different architectures by means
of the Transaction-Response Interface (TRI) [11]. Regardless of
their architecture, cores with private caches must have an instruction
cache, a write-through data cache, and (for application-class cores)
an MMU. These modules should be connected directly to the TRI.
This method is used in the integration of CVA6 into the OpenPiton
framework [9], which currently is the most commonly used
OpenPiton-based platform. As an alternative, cores without private
cache levels nor MMU can also be directly connected to the TRI.

B. OpenPiton Cache Hierarchy

OpenPiton’s cache hierarchy consists of a last-level cache, called
L2 cache, a private cache level per tile, called L1.5 cache.

Each tile contains a slice of the shared L2 cache and a directory
controller for the P-Mesh directory-based MESI coherence protocol.
The default configuration for the L2 cache is 64KB per slice, 4-way
set-associative, 8 MSHR and 64B cache blocks. The cache RAMs
are arranged in 4 sublines of 16B each, and 64B cache requests
require sequential accesses to the 4 RAMs.

Each tile also includes a write-back L1.5 private cache. The
default L1.5 cache configuration is 8KB capacity, 2 MSHR and
4-way set-associative with 16B cache blocks. It is connected to
the L2 cache through 3 physical NoC routers. The L1.5 cache
implements TRI, managing core requests for data, instructions,
and atomic operations. Notably, the L1.5 cache does not cache
instruction memory blocks; these are forwarded to the L2 cache.

C. OpenPiton Memory Controller
OpenPiton implements a memory controller inside the chipset

module. The platform can scale the number of tile modules, but
not the number of chipsets nor memory controllers. Being limited
to a single memory controller can cause bottlenecks, especially
in medium to large systems. In simulation, OpenPiton employs
an emulated simplistic memory controller in C code, where all
memory requests (read and write) are served with a fixed latency
of a single clock cycle. When the system is connected to a real
memory controller (such as in FPGA implementation), the port
used for the emulated memory controller is directly connected to
one physical channel of the memory controller.

By default, the chipset links to the west port of tile 0, which
is located in the northwest mesh corner. Consequently, memory
requests must traverse the entire NoC to access the memory
controller connected to tile 0. This setup can pose drawbacks in
large systems, potentially leading to large memory access latency
and NoC congestion.

D. OpenPiton NoC Routers
OpenPiton tiles are interconnected using three NoCs in a 2D

mesh topology. Pairs of adjacent routers are interconnected using
two 8-Byte uni-directional links. These links use credit-based flow
control, and packets are routed using dimension-ordered wormhole
routing. OpenPiton routers have a single-cycle latency when packets
are moved in the same direction and a two-cycle pipeline latency
when the packet involves any turn.

OpenPiton NoC packets implement a header flit and they require
data serialization. Three flits are injected into the NoC to transfer
a 16-Byte block of data from the L2 shared memory to the private
caches. For 32-Byte requests from the instruction caches, five flits
are required.

E. OpenPiton and HPC Requirements
Compared with high-performance manycores, OpenPiton has

performance limitations that can impact its ability to execute
computationally intensive tasks. Some of the limitations are:

Memory hierarchy: OpenPiton processors face memory
constraints due to memory controller and cache settings. The single
memory controller can bottleneck data flow from the main memory
when all tiles handle large amounts of data. Enabling multiple
memory controllers can enhance memory bandwidth per tile and
address this limitation. Enlarging the cache sizes and the block sizes
can also greatly improve performance.

NoC latency: This communication delay can severely impact per-
formance, necessitating low-latency NoC design for large systems.
Widening the NoC buses to reduce the number of flits per packet can
drastically reduce the NoC latency. In addition, employing multi-hop
bypass and increasing NoC concentration can help decreasing data
transmission hops and lowering the average communication latency.

Data transactions latency: Efficient data movement is essential
for shared memory systems. Updating data and bringing it closer to
the cores with low latency is key to avoid bottlenecks in the cache
hierarchy and to reduce the memory access time of the cores. Thus,
reducing the latency of the memory block transactions within the
cache itself can provide important performance benefits.

Improving these features is critical to increasing the performance
of OpenPiton in large-scale multicore architectures.
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Fig. 1. OpenPiton architecture upgraded with new features. New modules are
marked in red and optimized modules are marked in orange.

III. NOC AND CACHE
HIERARCHY OPTIMIZATIONS FOR HIGH PERFORMANCE

This section presents the modifications and optimizations
made in OpenPiton. Our aim is to customize the design for
high-performance multicores. Figure 1 visually summarizes the
key improvements, showcasing the original OpenPiton modules
alongside highlighted additions and modifications. New modules
are marked in red and optimized ones are marked in orange. The
next subsections explain the optimizations in detail.

A. Adapted Core Tile Using TRI

Core Tile is a new adaptability proposal for application-class
cores within OpenPiton. Core Tile integrates into OpenPiton using
the TRI interface. The main objective of the Core Tile is to reduce
memory access time and area.

Figure 2 depicts the architecture of the Core Tile. Note that the
Core Tile has a single L1 data cache, instead of the two private data
cache levels (L1 and L1.5) present in the original OpenPiton+CVA6
platform [9]. We remove the L1 write-through data cache and we
use the L1.5 cache from OpenPiton directly as the L1 data cache.
This is done by directly connecting the core to the L1.5 via TRI.

1) Core: The core tile incorporates a core called DVINO [12].
This core is a 6-stage single-issue, in-order architecture, alongside
a two-lane vector processor unit. The core implements the 64-bit
RV64G scalar RISC-V ISA v2.2 and privileged ISA v1.11.

2) Instruction Cache: The core tile features a 16KB Virtually In-
dexed Physically Tagged (VIPT) instruction cache with a two-cycle
hit latency. The address translation process is managed internally
within the instruction cache. It has a direct link to the NoC via traffic
arbitrators, avoiding passing through the L1 data cache. This reduces
cycles and avoids extra traffic in the data cache. Additionally, it can
accept block invalidations coming from the coherence protocol.

3) MMU: The core tile includes an SV39 MMU compatible
with RISC-V architectures. It comprises two 8-entry Translation
Lookaside Buffers (TLBs) and one Page Table Walker (PTW). The
updates to the dirty and access bits are handled by hardware.

4) Data Cache Interface: This module is the primary glue logic
responsible for directly connecting the core’s Load-Store Unit (LSU)
to the TRI. The data cache interface facilitates communication with
the MMU; address translation is handled before sending a request
to the L1 data cache. Additionally, this module handles exceptions
generated by the MMU and exceptions related to misaligned
addresses. The PTW is connected to the data cache to request Page
Table Entries (PTE) and update dirty and access bits. An arbiter
handles requests from the PTW and the core to the TRI.
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Fig. 2. Architecture of the Core Tile employing a modified version of TRI with
one private data cache and direct connection of the instruction cache to the routers.

5) NoC interface: The modified interface allows direct
instruction cache access to the NoC. An arbitrator in the NoC
request encoder prioritizes instruction cache requests over data
cache requests. Another arbiter is added in the NoC data decoder
to manage deliveries between instruction and data caches. These
deliveries can consist of memory data blocks or requests, such
as invalidations. A third arbiter is added in the NoC Ack encoder
to control the access of requests from private caches, both data
and instructions. This is because the instruction cache, after an
invalidation, needs to notify that the invalidation has been received.

B. Enabling Multiple Memory Controllers

We propose adding the capability in OpenPiton to configure the
number of memory controllers. In state-of-the-art large-scale mul-
ticores the memory wall can pose a challenge if memory bandwidth
is not scaled proportionally to the number of tiles. Consequently, to
prevent the saturation of memory bandwidth, high-performance mul-
ticores typically incorporate multiple memory controllers per chip.

We modify OpenPiton to allow a parameterizable number of
emulated memory controllers that are directly connected to the
edge tiles of the mesh, connected to the spare ports of the edge
NoC routers. By default, the memory controllers are automatically
distributed equidistantly across two opposite edges of the mesh
(east, and west) by a generation script. Such design typically
simplifies access to the physical DIMMS in both sides of the chip.
However, any alternative placement can be manually specified by
the designer. Furthermore, each L2 module is modified to route
its main memory requests to a fixed memory controller. Each
memory controller is assigned a balanced number of L2 modules
to manage. At the network creation phase, a script selects the sets of
L2 modules by a minimization process, which assigns them based
on their Manhattan distance to each memory controller, minimizing
the overall sum of distances. This process pretends to minimize
both the memory controller congestion and NoC delay.

Moreover, an input buffer module with a configurable pipeline
latency is integrated into the emulated memory model. The response
time in cycles can be adjusted to evaluate designs with a realistic
memory controller simulation. This enables studying the impact of
different memory latencies on system performance. This parameter
involves a delay in transactions between the last level cache and
memory controller, which will increase simulation time. This
increased time will be directly related to the memory controller’s
pipeline latency and the simulated application.



IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 14, NO. 5, DECEMBER 2024 4

C. Optimization of the NoC

Interconnection latency is a significant factor for the overall
system performance, so it is essential to keep it as low as possible.
To this end, we propose a set of optimizations in the NoC routers
to improve the latency of NoC transactions.

1) NoC Router Replacement: The first modification is the
integration of ProNoC [13] routers into OpenPiton. ProNoC
introduces advanced features aimed at optimizing interconnection
latency. One such feature is multihop-bypass [14], which enables
injected flits to bypass multiple routers in a single cycle, effectively
reducing the overall latency. Additionally, we also leverage another
ProNoC feature: increasing NoC concentration. This approach
reduces the number of intermediate nodes or routers between
cores, thereby diminishing communication latency, particularly in
scenarios with low congested traffic.

2) Increased NoC Bus Width: Another modification performed
in the routers is the increase of the data bus width. OpenPiton
routers use a 16B data bus; therefore, using the default OpenPiton
configuration, 1 flit is used to move data from the L2 cache to the
L1.5 cache and 2 flits from the L2 cache to the instruction cache,
in addition to the header flits. However, when increasing the cache
block size (which is one of the optimizations we propose in this
paper, as explained in the next section), this narrow 16B data bus
introduces extra latency because more flits are needed to move
larger cache blocks. To avoid this performance degradation when
using larger cache blocks, we increase the data bus width of the
routers to reduce the number of flits required in the NoC packets.

D. Improved Cache Configurability

We also propose enhancing the flexibility of the cache
configurations in OpenPiton. Specifically, we introduce the ability
to adjust cache sizes, cache block sizes, and to increase the data bus
width in the cache SRAMs to enhance memory transactions. This
flexibility allows users to explore these parameters, analyze their
effects, and identify the most suitable configurations for different
design objectives and constraints.

1) Cache sizes: The OpenPiton framework offers the option to
configure many parameters when building a model, including the
cache sizes. The SRAMs dimensions, the block indexing logic and
the tag selection logic are adapted according to these parameters
when the model is built. However, the cache replacement logic
and the L2 address interleaving logic lacks parameterization and
requires manual adjustment to different cache sizes. Otherwise,
some cache configurations may result in irregular utilization of
cache ways and L2 slices. To address this problem, we adjust the
cache replacement logic and the L2 address interleaving logic so
that they automatically adjust to the cache size.

2) Data Cache Block Sizes: OpenPiton uses different cache
block sizes in its cache hierarchy. The L1 data cache and the L1.5
cache use 16B cache blocks (referred to as sublines in the original
design), while the L2 cache employs 64B cache blocks. To increase
the performance of the private data cache levels, we develop a
configurable design that enables using cache block sizes of 16B
or 64B in the L1 data cache and the L1.5 cache. Implementing
this feature requires automatically adjusting the cache pipelines
and the NoC channels according to the configured cache block size.
16B sublines are still preserved in the new design, because Remote

Atomic instructions employ this granularity for the synchronization
operations that are performed in the shared Last-Level Cache.

3) Instruction Cache Block Size: The OpenPiton cache hierarchy
processes transactions from the data cache and the instruction
cache separately. Similarly to data caches, the cache block size for
instructions differs across cache levels: the L1 instruction cache uses
32B cache blocks, while the L2 operates with 64B blocks. Hence,
we incorporate support for using 64B blocks in the L1 instruction
cache and for handling 64B requests from the L1 instruction cache
to the L2 cache. This support requires modifications to both the
L2 cache pipeline and the L1 instruction cache. Furthermore, the
invalidation mechanism for instruction cache blocks is also adjusted
to 64B blocks.

E. Improved Memory Transactions

The default data size in memory transactions is 16B in the
OpenPiton cache hierarchy. This size is constrained by the cache
block size in the L1.5 cache, which is 16B, and by the SRAMs
data bus size of the L1.5 and the L2 caches, both of which are at
16B. This configuration works well with the default requests and
write-backs from the L1.5 cache, which are of 16B. With the new
proposed feature of having up to 64B cache blocks, limiting SRAMs
data bus size to 16B hinders achieving maximum performance.

When using a cache block size of 64B in the L1.5 cache, memory
block requests from the L1.5 cache to the L2 cache require 1
transaction, and reading the L2 cache SRAMs takes 4 cycles in the
best case (hit). However, for write-backs from the L1.5 cache to the
L2 cache, the L1.5 cache sends 4 transactions of 16B each. When
the L2 cache receives the first write-back transaction, it blocks
until the other 3 transactions arrive, and then writes the data of each
transaction to the appropriate SRAM separately. Thus, the whole
write-back process (since the L1.5 cache sends the first transaction
to the L2 cache until the L2 cache sends the final ACK to the L1.5
cache) takes at least 48 clock cycles.

In order to minimize the time needed for reads and writes to the
L1.5 and the L2 caches, we modify the SRAMs to expand their data
bus size to 64B in both cache levels. This enhancement allows for
the reading and writing of a 64B cache block within a single cycle.
Furthermore, we modify the write-back operation to take place in a
single transaction, significantly cutting down on the necessary clock
cycles. Modifications in the metadata logic related to the cache
blocks (e.g., directory, status, etc.) are not required. This optimiza-
tion, coupled with the previously proposed 64B cache block size
optimization, significantly reduces the access latency to the caches.

IV. EXPERIMENTAL METHODOLOGY

This section explains the tools, benchmarks and development
platforms employed to evaluate our work, as well as the
methodology used to accelerate RTL simulations.

A. Benchmarks

We use a set of bare-metal benchmarks to evaluate the proposed
optimizations. These benchmarks are selected from the RISC-V
tests [15] and the LMbench [16], RiVEC [17] and NAS Parallel
Benchmarks [18] suites. Table I shows the benchmarks categorized
into three main groups.
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TABLE I
BENCHMARKS USED IN THE EVALUATION.

Benchmark Size (MB) Description

a)

copy 128 Vector operation C⃗=A⃗

scale 128 Vector operation B⃗=k×C⃗

add 128 Vector operation C⃗=A⃗+B⃗

triad 128 Vector operation A⃗=B⃗+k×C⃗

b) matmul 9,5 Multiplication of two 2D matrices of
the same dimension

somier 22 Physics calculations using 3D matrices

c) histogram 128 Histogram calculation of the
distribution of numerical data

int-sort 64 Sorting a large set of integer numbers

Group a) comprises the four kernels of the Stream benchmark
(which is part of LMBench), which is aimed at evaluating memory
bandwidth. These kernels perform different operations on large data
vectors that exceed the cache sizes, and they feature a linear access
pattern without data reuse, highlighting their absence of temporal
locality.

Group b) encompasses matrix operation applications for evalu-
ating arithmetic and memory subsystem efficiency. These compute-
intensive apps involve significant data movement and reuse and are
geared toward handling 2- and 3-dimensional matrices. MatMul is a
matrix multiplication code obtained from the RISC-V tests. Somier
(available at [19]) is an application from the physics Simulation
domain, which calculates the trajectory of an object in a 3D-space.

Group c) consists of applications that count the frequency of
distinct values or ranges within datasets. The distinguishing feature is
their reliance on atomic operations, comprising a considerable num-
ber of such operations which are executed in the L2 shared memory.

These benchmarks have been adapted as required to run in
our environment; for example, Int-Sort has been ported to run in
baremetal, Histogram (from the Risc-V benchmarks repository) has
been parallelized, and the algorithm implementation in MatMul
has been fine-tuned. Overall, they represent several kernels typically
found in HPC applications, with compute-intensive vector and
matrix operations, and present diverse characteristics to explore
different aspects of the system.

B. Simulation and Emulation Tools

We employ RTL simulation and design emulation in FPGA to
validate and characterize our designs. RTL simulation employs the
actual implementation of each module; memory controllers are not
implemented, so in this case they are emulated using C code, as
described in Section II-C. FPGA implementation synthesizes the
design to emulate the system behavior, and employs the FPGA re-
sources (memory controller) for elements that are not implemented.

We use Questasim-64 2020.4 and Verilator v4.104 for RTL
simulation. While Questasim is primarily used for debugging,
Verilator is used for the design space exploration since it allows
the execution of multiple simulations in parallel without license
restrictions. Being able to use the two simulators also shows the
robustness of the implementation of the proposed optimizations.

To generate the results we use Verilator with Metro-MPI [20],
which enables the parallelization of a single RTL simulation across

different cores and nodes of a cluster and, thus, it greatly reduces the
RTL simulation times. Our design space exploration requires approx-
imately 44.25 hours to complete 776 RTL simulations, employing
50,440 cores within Marenostrum 4. Without the use of Metro-MPI
this process would become excessively time-consuming.

The Xilinx Alveo U280 and U55C FPGA development boards
have been used to emulate the system behavior with actual
peripherals (such as a real memory controller) and validate Linux
boot and the correct execution of bare-metal applications. Up to
4-core configurations in a 2x2 mesh have been synthesized and
evaluated on these development boards.

V. EVALUATION RESULTS

This section delves into the results derived from a range of
experiments focused on the design space exploration of Core Tile
and the newly added features for high-performance manycores,
ultimately resulting in a comparison of Core Tile and its best
configurations against OpenPiton and its default configuration.

In this section, two designs are taken as references for the
experiments. The Baseline is the default cache hierarchy of
OpenPiton, with the most recent code from November 20231

employing the following default parameters: 8KB of L1 data cache,
8KB of L1.5 data cache, 16 KB of L1 instruction cache, 64KB of
L2 cache per slice, 16B memory blocks, 1 memory controller, and
OpenPiton routers. CoreTileBase is the Core Tile architecture with
the exact same default parameters inherited from OpenPiton (i.e.,
it only removes the L1 data cache and uses the L1.5 cache as L1
data cache). Both designs use the DVINO core.

OpenPiton routers have single-cycle latency for packet
forwarding in the same direction and two-cycle latency for changes
in direction. Furthermore, the simulations are conducted using a
memory controller pipeline latency of 150 cycles and a mesh with
64 cores in an 8x8 configuration.

A. Multiple Memory Controllers Exploration
Figure 3 shows the kernel execution time speed-up when varying

the number of memory controllers using the automated script. The
x-axis shows the number of memory controllers ranging from 1
to 16, and the y-axis shows the speed-up over the CoreTileBase
configuration. CoreTileBase implements the memory controller
within the chipset and is connected to NoC routers via a crossbar,
alongside other modules. When multiple memory controllers
are enabled, they are implemented outside the chipset to prevent
resource sharing among other modules. This is why in the chart,
there is also a case with only one memory controller, which shows
a slight improvement in comparison to CoreTileBase.

Notably, group b) (blue lines) are not memory-bound applications
and do not significantly benefit from adding memory controllers.
In contrast, the other groups present significant speed-ups. As the
number of memory controllers increases from 1 to 5, the speed-up
in groups a) and c) (green and purple lines) increases drastically.
However, as the number of memory controllers increases from
5 to 16, the speed-up reaches a plateau, only showing a slight
performance increase in group c). On average (gmean line), the
speed-up achieved with 4 memory controllers is 2.2x, while with
16 memory controllers it is 2.4x.

1Note that the intermediate work in [6] employed an OpenPiton baseline version
from April 2021, which may lead to minor discrepancies in the presented results.
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The int-sort benchmark demonstrates a greater speed-up as
the number of memory controllers increases. In particular, the
speed-up achieved with 5 memory controllers is 4.1x over using
only 1 memory controller. Moreover, when employing 16 memory
controllers, the speed-up is enhanced even further, reaching 4.5x
speed-up compared to a single memory controller scenario. This is
attributed to the nature of being a memory-bound application. The
application executes a substantial amount of atomic operations on
shared memory together with numerous movements in memory.

Next, we evaluate the impact of the memory controllers
placement, inspired by the analysis in [21]. We restrict our analysis
to 4 memory controllers placed in the mesh edges, either using
the automated script or manual placement. Figure 4 depicts
the configurations studied. Configuration a) represents the base
configuration, automatically generated by the script. Configuration
b) allocates memory controllers on one side of the mesh, while
configuration c) employs memory controllers at each corner of the
mesh. Configurations d) and e) distribute the memory controllers
near the centers of the edges: The first case follows a diamond
configuration using the four edges, and the second employs Y-sides
with memory controllers symmetrically distributed.

Figure 5 depicts the performance improvement achieved by
each distribution of memory controllers in the mesh. On average,
an improvement between 1.7% and 3.9% is achieved for all
applications using these manual placement alternatives, with the
highest improvement achieved by Y-symmetric. Group a) benefits
the most from the organization of the memory controllers in the
majority of cases, achieving up to 8.6% improvement in triad. This
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Fig. 6. Speed-up of different degrees of NoC multi-hop bypass (HPCmax) with
1 and 4 memory controllers.

occurs because this group is memory intensive, requiring fast access
to main memory. In group b) the impact is despicable. Applications
in this group exhibit temporal locality, with a large number of
transactions hitting at the private and shared cache levels, reducing
main memory accesses. The group c) has a mixture of transactions
involving atomic operations and data loads. Since atomic operations
are executed at the shared level (L2), this group yields intermediate
results between groups a) and b).

B. Multi-Hop Bypass Exploration

To analyze the impact of multi-hop bypass on application
execution time, we perform simulations using 64 cores with 1 and 4
memory controllers. Figure 6 presents the results. The CoreTileBase
configuration is compared against ProNoC with varying values
of HPCmax, from 0 to 7, in which packets with a destination
in the same direction can bypass HPCmax − 1 routers within
a single cycle. For HPCmax = 1, ProNoC routers present the
same base latency as the routers in the OpenPiton baseline, but
with a different router architecture. On average, in a system with
1 memory controller, multi-hop bypass provides up to 3% speed-up
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Fig. 7. Speed-up of NoC concentration 2 and 4 (C2/C4) with 1 and 4 memory
controllers (1MC/4MC).

with HPCmax 3, while in a system with 4 memory controllers it
provides up to 2.4x speed-up with HPCmax 4.

As shown in Figure 6a, the benefit achieved by multi-hop bypass
when using 1 memory controller is negligible in groups a) and
c), while for group b) it is between 2% to 12%. The effectiveness
of multi-hop bypass increases when the bandwidth bottleneck is
alleviated by using 4 memory controllers, as shown in Firgure 6b.
In this case, increasing HPCmax provides performance benefits
in all the benchmarks, up to 8% in add with HPCmax 4 compared
to HPCmax 1.

C. NoC Concentration Exploration

To observe the influence of Noc concentration on performance,
we execute experiments with NoC concentrations of 2 and 4. The
simulations are performed with two different configurations of
memory controllers, 1 and 4. Figure 7 illustrates the results of this
experiment.

When using 1 memory controller, the overall performance results
indicate a 1% performance decrease with concentration 2 (bar
C2-1MC), but using concentration 4 (bar C4-1MC) restores the
performance of the baseline. When employing 4 memory controllers,
a consistent 2.3x geometric mean speed-up is achieved in both
configurations of concentration (bars C4-1MC and C4-4MC). The
most noticeable speedups are achieved by group c) with 4 memory
controllers, where increasing the concentration to 4 provides up to
5% speed-up in int-sort compared to using concentration 2. Groups
a) and b) do not benefit from NoC concentration or even present
a very slight performance degradation in group a).

D. Cache Block Size Exploration

1) Data Cache: Figure 8 illustrates the speed-up achieved by
increasing the L1 data cache block size from 16 to 64 bytes in
two distinct scenarios, where the number of memory controllers
is 1 and 4. The average speed-up obtained is 1.3x employing 64B
cache blocks and 1 memory controller, while with 4 memory
controllers 3.7x is achieved. It is challenging to perceive the impact
of using 64B cache blocks with just 1 memory controller, given the
bottlenecks generated in the main memory. However, when these
bottlenecks are reduced by incorporating more memory controllers,
the benchmarks take better advantage of this new feature, resulting
in higher speed-ups.

In group a), with only 1 memory controller, the increase in
cache block size to 64B results in minimal improvement because
the primary limitation remains in the memory bandwidth. In
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Fig. 8. Performance comparison between 16- and 64-Byte cache blocks for the
L1 data cache across configurations with 1 and 4 memory controllers (1MC/4MC).

contrast, when 4 memory controllers are employed with 16B cache
blocks, significant speed-ups ranging from 2.3x to 4x are achieved.
Therefore, by increasing the cache block size to 64B, the speed-ups
are further enhanced up to 4x.

Within group b), we encounter two special cases. The data reuse
within this group is notably high. However, somier exhibits a greater
benefit than matmul when the cache block size is enlarged. somier
processes 3D matrices, whereas matmul is limited to 2D matrices.
Consequently, somier demonstrates more pronounced data reuse
compared to matmul, resulting in increased traffic between shared
and private caches, as opposed to traffic to/from the main memory.
Conversely, matmul can efficiently handle the data within the
private caches due to its smaller input dataset.

Group c) demonstrates minimal advantage when increasing
the size of cache blocks, regardless of whether 1 or 4 memory
controllers are employed. This is because these benchmarks
exhibit notably low spatial locality. Atomic memory operations
predominate in this kind of applications, which are served by the
shared L2 cache. Therefore, these operations do not get any benefit
when increasing the private L1 cache block size.

2) Instruction Cache: We do not observe any performance
improvement by increasing the cache block size in the L1 instruction
cache. This behavior arises from the small instruction footprint
compared to the dataset size of our benchmarks. Since the entire
program fits into the instruction cache, when the kernel is executed,
the entire program is cached in the instruction cache.

The variations in the results are nearly insignificant, and they
are primarily attributed to the invalidations in the instruction cache
triggered by the coherency protocol. We observe that, when using
64-byte blocks, requesting a new instruction cache block takes
slightly more time than when using 32-byte cache blocks. Yet, this
request time is also affected by the distance from the requester core
to the home node, for any cache block size.

E. NoC Bus Size Exploration

Figure 9 displays the geometric mean derived from a series
of exploratory experiments in which various NoC bus sizes are
evaluated across all applications. The figure shows the effect of
increasing the NoC bus size in two scenarios: employing 1 and 4
memory controllers. The experiments labeled as 64b, 12b, 156b
and 512b use the default cache size configurations but with 64-byte
cache blocks in both L1 data and instruction caches. The results
are normalized to the CoreTileBase results, which uses the default
cache size and cache block size configurations.
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Fig. 9. Geometric mean speed-up achieved with different bus widths in the NoC
routers using 1 and 4 memory controllers (1mc/4mc).

In the scenario with 1 memory controller, increasing the width
of the NoC2 to 512 bits shows up to a 37% benefit compared with
64 bits, and it also achieves a 1.8x speedup compared with the
CoreTileBase. This is because NoC2 is used for data transfers and
is responsible for moving entire memory blocks from the L2 cache
to the L1 cache. For NoC1 and NoC3, increasing their widths from
64 bits to 512 bits provides performance benefits of less than 1%.
This is attributable to the maximum payload size per type of request
from the L1 cache to the L2 cache being 128 bits. NoC3 is also
used to deliver memory blocks from main memory to the L2 cache
but, with only one memory controller, the latency advantage of
having a wider bus width is negligible compared to the latency of
of accessing main memory.

When using 4 memory controllers the benefit of widening NoC3
can be observed, where a 7.5% speed-up is achieved with 512 bits
compared to 64 bits. This configuration achieves a 4.0x speed-up
compared to the CoreTileBase. In NoC 2 with 512 bits, we are
achieving a 10.1% benefit compared to 64 bits and 4.1x against
CoreTileBase. Finally, in NoC 1, the benefit continues to be less
than 1%.

F. 64-byte Transactions Exploration

This section evaluates the combined impact of three design opti-
mizations: wide buses in the NoCs, wide data buses in the SRAMs of
the caches, and wide cache block sizes. We refer to the combination
of these three parameters as the transaction width. Together, these
three optimizations offer the necessary means to store, read, write,
and transmit large memory blocks in the whole memory hierarchy.
Importantly, these three parameters offer the best performance when
they are configured in unison, as configuring them with different
widths can lead to an underutilization of the wide resources due to
the bottlenecks introduced in the narrower resources. For instance,
64-byte NoC buses are underutilized when transmitting 16-byte
cache blocks, while employing 64-byte cache blocks and data buses
in the SRAMs of the caches combined with 16-byte NoC buses can
create bottlenecks when data is transferred through the NoC.

Figure 10 compares the performance of using transaction widths
of 16B and 64B (T16B/T64B) with 1 and 4 memory controllers
(1MC/4MC). All results are normalized to CoreTileBase, which
employs 16-byte transactions and 1 memory controller. The bar
T16B 4MC is CoreTileBase but employing 4 memory controllers.
According to the geometric mean, a transaction width of 64B with
1 memory controller shows better results than the baseline and than
16-byte transactions with 4 memory controllers (4.1x and 1.8x re-
spectively). The better results are achieved with 64-byte transactions
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Fig. 10. Speed-up comparison between 16- and 64-byte transactions and data bus
width in SRAMs and NoCs across configurations with 1 and 4 memory controllers
(1MC/4MC).

and 4 memory controllers, which achieve up to 5.0x speed-up over
the baseline. Comparing 64-byte with 16-byte transactions in the
scenario with 4 memory controllers, results shows that groups a) and
b) achieve huge speedups of around 2x in all cases except somier,
which achieves 9.2x. Group c) achieves moderate speed-ups as well,
but these are limited by the atomic operations, which are executed
in L2 and are implemented with 16-byte transactions, so they do not
get the most of the wider buses and cache blocks.

G. Cache Size Exploration

Figure 11 illustrates the results from exploring the use of larger
caches in the system. In this experiment, we evaluate different cache
setups, ranging from 8KB to 128KB for the L1 cache and from
64KB to 512KB for the L2 cache. The evaluations are conducted
using 1 and 4 memory controllers. Overall, we observe that larger
caches provide great performance improvements, specially when
enlarging the L2 cache capacity. On average, the largest cache
configuration achieves speed-ups of 2.5x and 4.8x with 1 and 4
memory controllers, respectively.

Group a) shows limited benefits after increasing the cache sizes.
This behavior is attributed to the fact that this group of applications
fails to exploit temporal locality. In the scenario with 4 memory
controllers, a noticeable benefit of up to 3.2x is observed. This is a
result of reduced bottlenecks when accessing main memory, rather
than being due to an increase in cache sizes.

The significant data reuse observed in group b) contributes to
achieving greater speed-ups when cache sizes are increased. Both
with 1 and 4 memory controllers, in somier the benefits of larger
caches are evident, with up to 38x speed-up when using a 128KB
L1 cache and a 512KB L2 cache with 1 memory controller. The
large speed-ups achieved in somier are the result of having more
traffic between shared and private caches than between shared
caches and main memory, due to data reuse. This avoids bottlenecks
in the main memory. However, in the case of matmul, the benefit
is not as pronounced due to the smaller dataset used.

Group c) also experiences benefits from the large caches,
particularly when the shared L2 cache is enlarged. A remarkable
characteristic of this group is the utilization of atomic operations,
which are executed within the shared L2 cache. With an increase
in L2 cache capacity, the hit ratio for atomic operations improves,
leading to a reduction of main memory accesses.
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TABLE II
TESTED CONFIGURATIONS WITH NEW FEATURES.

Configuration name L1 L2 Block Mem. By- Conc. SRAM NoC
(KB) (KB) Size (B) Ctrl. pass Bus (B) Bus (B)

Baseline 8 64 16 1 - - 16 8
Large 32 512 16 1 - - 16 8
Large+Ctrl 32 512 16 4 - - 16 8
Large+Block+Ctrl 32 512 64 4 - - 16 8
Large+Block+Ctrl+Byp 32 512 64 4 4 - 16 8
Large+Block+Ctrl+Con 32 512 64 4 - 4 16 8
Large+Block+Ctrl+T64 32 512 64 4 - - 64 64
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(a) Different cache sizes and 1 memory controller.
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Fig. 11. Speed-up of different combinations of L1 data cache and L2 cache sizes
with 1 and 4 memory controllers.
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Fig. 12. Speed-up of different configurations with the newly added features against
the OpenPiton baseline.

H. Comparison with OpenPiton Baseline

Finally, we conduct experiments that combine the proposed
extensions and optimizations to OpenPiton, and we compare

their performance with the OpenPiton baseline. The evaluated
configurations are presented in Table II. The configurations are
selected after analyzing the experiments previously conducted in
this section, focusing on those that provide the largest performance
benefits. The configurations are incrementally built according to
the following selected parameters: cache sizes of 512KB for L2
and 32KB for L1 (large), 64B memory blocks (Block), 4 memory
controllers (Ctrl), router bypassing (Byp), router concentration
(Con), and a 64B buses in the NoC and in the SRAMs (T64).

1) Cache Hierarchy Optimizations: Figure 12 presents
the results obtained from incorporating all the features and
optimizations into OpenPiton. On average, the speed-up achieved by
using large caches of 32KB L1 cache and 512KB L2 cache(Large)
is around 2.3x. By adding more memory controllers (Large+Ctrl),
the average speed-up increases to 4.5x. On top of these two features,
increasing the cache block sizes to 64B (Large+Block+Ctrl)
achieves an average speed-up of 5.4x. Incrementally introducing
multi-hop bypass (Large+Block+Ctrl+Byp) or concentration
(Large+Block+Ctrl+Con) in the routers results in a slight
average performance increase, reaching 5.6x over the baseline.
The maximum speed-up is achieved when the data bus size
of the NoCs and the cache SRAMs is increased to 64B
(Large+Block+Ctrl+T64), achieving a 7.2x speed-up over the
baseline (28.5% over the intermediate work in [6]). With this
configuration, the most important bottlenecks of the memory
controller, caches, and NoC routers are effectively removed.

2) Average Memory Access Time: Figure 13 shows the Average
Memory Access Time (AMAT) employing different features to
improve the memory access latency in the Core Tile compared with
the OpenPiton baseline. The results are obtained simulating a vector
reduction benchmark with different input set sizes on a single core
configuration with one memory controller. The benchmark iterates
on a loop i doing the operation accum=accum+A[i]. The results
are categorized into three ranges. The first range occurs when the
whole data set fits in the L1 cache. In the second range, the size of the
data set is larger than the L1 cache but smaller than the L2 cache. The
third range covers scenarios where the data set is larger than the L2
cache, so the execution is dominated by accesses to main memory.

The first configuration, CoreTileBase, consists of removing the
write-through cache level of the OpenPiton Baseline. The result of
this modification is a 9.3% AMAT reduction in the third range (from
96KB to 4MB) and an AMAT reduction of 12.1% in the second
range (from 8KB to 64KB). The second configuration, (Large), in-
creases the size of the caches, which results in a range displacement
because of the extra capacity. As expected with the large cache sizes
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Fig. 13. Average memory access times achieved with various configurations with
different input set sizes.
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Fig. 14. Throughput achieved in NoC2 employing different configurations.

specified in Table II, the third range is shifted from 512KB to 4MB,
and the second range from 32KB to 512KB. The AMAT in each of
the ranges does not change compared to CoreTileBase.

When the cache block size increases to 64 bytes in the configura-
tion Large+Block, the AMAT increases in the first range from 3 to
6 cycles. This happens because, using 64-byte cache blocks without
the T64 optimization, the cache blocks are read in chunks of 16 bytes.
Thus, 4 cycles are needed to read the complete 64-byte cache blocks,
compared to a single cycle for 16-byte cache blocks. The increase for
other ranges is approximately 0.8% in comparison to CoreTileBase.

Finally, a significant AMAT reduction is achieved when the
widht of the data buses of the SRAMs and NoCs is increased in
the configuration Large+Block+T64. We observe a reduction in
the second and third ranges from 9.3 to 4.3 cycles and from 23 to
16 cycles, respectively. Additionally, the first range is reduced to
3 cycles again. All together, this final configuration shows much
lower average memory acces times than the rest of configurations
and than the OpenPiton Baseline.

3) Throughput: ProNoC latency and throughput parameters
have been studied in isolation, including the impact of bypass
and concentration [14]. This subsection explores the impact of the
memory hierarchy changes on the memory throughput obtained by
the application. We measure the throughput as the average number
of 64B flits/cycle delivered by NOC2, which is the NOC that serves
data requests, during the application Region Of Interest. This is an
aggregate value for the 64 tiles in the system.

Figure 14 presents the measured throughput for different
cumulative configurations: CoreTileBase employs the default
configuration with a single Memory Controller; 4MemCtrl increases
this value to 4, using the automated placement; 64BMBlock increases
block size to 64 Bytes (but it requires several consecutive SRAM
accesses); 64BNoC increases the NoC bus width to 64B to reduce
serialization delays; finally, 64BTrans supports 64B SRAM transfers.
Each of these improvements speeds-up the execution (reducing the
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ROI duration), which increases average throughput values.
We observe that the throughput of the base configuration is

highly dependent on the application; Matmul presents larger
temporal locality, which increases measured throughput by reducing
the percentage of main memory accesses. The different Stream
benchmarks are memory intensive but they do not exploit any
temporal locality, obtaining much lower values.

The configuration changes that yield the largest throughput im-
provements are the use of multiple Memory Controllers (particularly
for Stream applications) and the wider NoC bus. On average, these
changes improve mean throughput from 0.44 flits/cycle to 1.04
and 3.36 respectively. The 64B tranfer size is particularly effective
in matmul, providing a 60% throughput improvement; overall, the
complete configuration increases measured throughput by 8.95×
on average, larger than the application speedup improvements.

4) FPGA implementation: Figure 15 shows the resource
utilization of the CoreTileBase configuration within an FPGA,
comparing it with the resource utilization of the OpenPiton Baseline.
Single- and Quad-core configurations are evaluated interconnecting
via a 2D-mesh. Both cases exhibit an approximate 11% reduction
in the number of LUTs required to implement the CoreTileBase.

The reduction is mainly attributed to the fact that the write-
through L1 data cache is removed in CoreTileBase. This cache
represents 6.5% of the total amount of LUTs implemented. The
remaining percentage is attributed to differences produced by
logic that is not implemented because of the removal of this cache
(signals, buses, arbiters, etc.) or by other miscellaneous logic. For
example, Baseline uses modules from CVA6 such as the MMU and
the instruction cache, while CoreTileBase uses analogous modules
developed in-house.

VI. DISCUSSION

This section discusses certain aspects about the application and
configuration of our design.

Application domain: The present work introduces a series of
optimizations specifically designed and tested within the domain
of High-Performance Computing (HPC). For this reason, they
are tested using representative benchmarks for HPC workloads.
However, these configurations can also be applied beyond the
scope of HPC. The design improvements over OpenPiton will
clearly benefit applications in other domains. For example, a larger
cache capacity and block size will benefit any memory intensive
application (such as AI, deep learning or accelerators) and streaming
applications will similarly benefit from increased bandwidth.
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Optimal Design tuning: We do not suggest a single optimal
design point or configuration. Based on the specific application
domain, each target chip requires an evaluation to determine the
most suitable configuration, constrained by the requirements and
limitations of the design, typically in terms of performance, area
and power. The proposed tool provides flexibility to configure and
test multiple setups, which allows the architect to test and find the
optimal configuration for the target application domain.

Memory mapping policies: The assignment mechanisms that
maps L2 modules to memory controllers, presented in Section III-B,
statically assigns a set of L2 modules to each memory controller.
Such simple design avoids any memory interleaving from an L2
module to main memory. The reason to select such design is that
the access from L1 to L2 already implements an interleaved access
policy, so the benefit obtained by interleaving accesses from L2
to the MC would be small while increasing the complexity of the
design. Alternative policies could be implemented in the future to
improve the flexibility.

VII. RELATED WORK

BlackParrot [2] is a 64-bit RISC-V multi-core processor featuring
a two-level cache hierarchy with varied cache coherency protocols
(VI, MSI, and MESI). Similar to OpenPiton, BlackParrot employs
multiple memory controllers and a 2-D mesh NoC with three
physical routers without virtual channeling. Unlike OpenPiton,
BlackParrot has a specific network to connect the memory
controllers with the L2 slices. BlackParrot has been taped-out with
a 4-core configuration.

The PULP platform [5] comprises a RISC-V core and an
octa-core accelerator within a low-power SoC targeting IoT
applications. The cache hierarchy includes a 512KB shared L2
cache, registers banks, and scratch caches. The shared L2 cache is
divided into four slices. The RISC-V core lacks a private cache level
but has two 32KB register banks used to allocate the program stack
and private data. The octa-core accelerator employs a scratch cache
and directly accesses the L2 cache. PULP employs an AXI-based
communication between cores and the cache hierarchy. Unlike
OpenPiton, PULP is not focused on manycore systems.

Agiler [22] is a multi-core architecture based on RISC-V, targeting
heterogeneous systems. This architecture is composed of three kinds
of processing tiles. The main processing tile comprises a quad-core,
a shared instruction cache, and a memory controller. The second
type consists of compute tiles based on RISC-V. The compute tiles
include a 64-bit dual-core or a 32-bit quad-core, both with shared
data and instruction caches. The main processing tile and the com-
pute tiles internally employ AXI-based communication. The third
type of tiles consists of custom accelerators. The accelerators and the
compute tiles are interconnected via mesh routers. Each compute tile
has its own memory region to work in, and its respective data and
instructions are loaded into the corresponding region. In contrast, in
OpenPiton, each tile works within the same memory space.

Open ESP [3] is an open-source framework for developing
embedded systems and prototyping SoCs. It features a modular
FPGA SoC architecture using tiles interconnected via a 2D-Mesh
NoC with look-ahead routing. In addition, it provides tools and
libraries to create software applications. The SoC includes four tile
types: processor, accelerator, memory, and auxiliary. The processor

tiles house two different cores to choose, which are RISCV 64-bit
Ariane or SPARC 32-bit with two MESI-coherent private cache
levels. The accelerator tiles execute coarse-grained tasks during the
exchanging of large datasets in the memory hierarchy, facilitating
efficient data exchange. The memory tiles include a shared LLC
slice and a memory controller port, while the auxiliary tiles employs
controllers to manage peripherals. Similar to OpenPiton, ESP
supports multiple memory controllers and coherence protocols,
enhancing scalability in manycores.

VIII. CONCLUSIONS

In recent years, the emergence of RISC-V has led to an increase
in both academic and industrial multicore processor prototypes.
With the significance of NoCs in large multicore systems, platforms
such as OpenPiton have garnered significant interest. Nevertheless,
OpenPiton’s NoC and memory hierarchy lack essential features
commonly found in high-performance manycores.

This paper presents a set of extensions and optimizations to the
NoC and the memory hierarchy of OpenPiton for improving the
performance of large-scale multicores and manycores. In particular,
we add the capability to increase the number of memory controllers
in the system, reducing the bottleneck caused when a big number
of tiles try to access a single memory controller at the same time.
In order to optimize the latency transactions in the cache hierarchy,
introduce bypassing and NoC concentration features in the routers
and we increase the NoC bus width to 64 bytes. In the cache
hierarchy, we enable increasing the cache sizes, the cache blocks
sizes and the SRAM bus widths. All together, these new features
allow reducing the latency and augmenting the bandwidth of the
cache hierarchy and the NoC.

We evaluate our proposal using RTL simulations and we
demonstrate that many applications with different characteristics
can take advantage of the presented optimizations and new features,
including memory-bound, cache-intensive and synchronization-
intensive applications. Overall, the combination of the proposed
new features and optimizations on a 64-core manycore architecture
provides an speed-up of 7.2x compared to the OpenPiton baseline,
or 28.5% over the intermediate work in [6].
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